

A Transformational Natural Gas Fueled Dynamic SOFC for Critical Datacenter In-Rack Power

Primary: University of South Carolina

Sub: Atrex Energy

Kickoff meeting September 21, 2018

Outline

- Background
- Project objective(s)
- Technical approach
- Project structure
- Project schedule
- Project milestones
- Project budget
- Project Management Plan

- \$17 billion global market (2017)
- Expected to grow to \$25 billion by 2022
- 8% compound annual growth rate (CAGR)
- \$6 billion market in the US alone
- Represents 2-3% of the total energy consumption in the US and Canada
- \$150 billion in losses a year due to power incidents
- Low energy efficiency
- Dynamic load characteristic
- 99.999% reliability requirement
- Relying on costly and "dirty" backup systems (diesel generators) to handle datacenter's load spikes and reliability demands

Key Performance Metrics for Datacenters

Di Wang, "Co-optimization of data center loads and fuel cell systems", MSFT-UW Fuel Cell Workshop, January 2017.

In rack power

Arka A. B, David C., Aman K., Sriram G. and Sriram S, "The Need for Speed and Stability in Data Center Power Capping", IGCC'12

Renewable Energy

Hydrogen

Hydrogen

IT racks, batteries, power conversion

Limitations of Conventional SOFCs for Datacenter Applications

- Designed for baseload power applications at constant fuel and air utilizations
- Poor overload tolerance causing local fuel starvation, Ni-oxidation and cracks in anode
- Slow fuel supply response system mass flow controller
- Lack of robust control algorithms

Energy & Environmental Science, 9 (2016), 3746 – 3753

Background - Issues

Before testing

After testing

- Overarching objective: to develop a new generation of dynamic SOFC system operated on NG for datacenter applications
 - Primary objective -1: to develop durable metal-bed design and compositions
 - Primary objective -2: to demonstrate the new cell technology at pilot-scale

Optimizing active metal/supporting-oxide ratio

New Fe-X compositions and segmented bed design

New sintering-resistant and active oxides

Sintering-resistant active metal particles

Metal-steam reaction kinetics

Alloy activity study

Computational modeling

Pilot-scale testing

Materials development

Characterization

Theory

Validation

Project Schedule

ID	Milestones	Work Task	Schedule (Qtrs)	Verification methods
1	Selection of the optimized M/SO ratio	2.1	1-2	Isothermal TPO redox cycle
2	Selection of new Fe-X showing balanced Po ₂	2.2	1-2	Oxygen concentration cell
3	Selection of H ⁺ -containing ceramic composition	2.3	2-4	Isothermal TPO redox cycle
4	Selection of MLD parameters	2.4	2-4	TEM and Isothermal TPO redox cycle
5	 >30% power enhancement >100% overload tolerance for a continuous 30-minute operation 15Wcm⁻² min⁻¹ power response rate and <0.5%/kh degradation rate for 1,500 h 	4.1- 4.3	5-8	Testing at Atrex with homogeneous and segmented beds using H ₂ , CPOX and SMR fuels

Project funding profile of government share

	Year 1		Year 2		Total	
	DOE	Cost	DOE	Cost	DOE	Cost
	funds	share	funds	share	funds	share
University	\$	\$	\$	\$	\$	\$
of S. C.	223,756	51,267	226,244	61,233	450,000	112,500
Atrex	\$0	\$0	\$ 50,000	\$	\$ 50,000	\$ 12,500
Energy				12,500		
Total (\$)	\$	\$	\$	\$	\$	\$125,00
	223,756	51,267	276,244	73,733	500,000	0
Total cost share (%)			21.06%		20%	

Project costing profile of government funding

Month	Year 1 (\$)	Year 2 (\$)
October	10,482	13,591
November	8,284	14,987
December	8,584	13,591
January	15,685	21,991
February	8,184	13,591
March	8,584	13,591
April	10,282	14,988
May	8,434	13,591
June	60,417	60,370
July	60,517	60,370
August	16,185	21,991
September	8,119	13,591

Foreseeable risks	Mitigation approaches
Fe-X alloy compositional optimization assuming ideal Fe-X solution model	Use of oxygen concentration cell method to directly determine a_{Fe} in Fe-X alloys
Fe-bed consumption under nominal 75% fuel utilization SOFC operation	Developing Fe-bed compositions that only allow Fe-bed consumption at > 75% (or any other) fuel utilization
Project on-schedule	Monthly teleconference with Atrex Quarterly teleconference with Diane
Project on-budget	University financial monitoring system